์ „์ฒด ๊ธ€ 20

[ํ”„๋กœ๊ทธ๋ž˜๋จธ์Šค] ์ง์ˆ˜ ํ™€์ˆ˜ ๊ฐœ์ˆ˜

์ด๊ฒŒ ๋‚ด ์ฝ”๋“œ. def solution(num_list): even = 0 odd = 0 for i in num_list: if i%2==0: even+=1 else: odd+=1 return [even, odd] ๋‹ค๋ฅธ ์‚ฌ๋žŒ ์ฝ”๋“œ. ์ด๊ฑฐ ๋ณด๊ณ  ๊ฒฝ์•…ํ•ด์„œ ๋ธ”๋กœ๊ทธ ์“ธ ์ˆ˜ ๋ฐ–์— ์—†์—ˆ๋‹ค. def solution(num_list): answer = [0,0] for n in num_list: answer[n%2]+=1 return answer ๊ณ„์‚ฐ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ€์ง€๊ณ  ๋ฆฌ์ŠคํŠธ ์ธ๋ฑ์‹ฑ์„ ํ†ตํ•ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ–ˆ์Œ.. n%2๋ฅผ ํ–ˆ์„๋•Œ ์ง์ˆ˜์ด๋ฉด ๋‚˜๋จธ์ง€๊ฐ€ 0์ด๋‹ˆ answer[0]์— 1์„ ์ถ”๊ฐ€ํ•˜๊ณ , ํ™€์ˆ˜์ด๋ฉด ๋‚˜๋จธ์ง€๊ฐ€ 1์ด๋‹ˆ answer[1]์— 1์„ ์ถ”๊ฐ€ํ•˜๋Š” ๋ฐฉ์‹์ž„. ์–ด๋–ป๊ฒŒ ํ•˜๋ฉด ์ฝ”๋“œ๋ฅผ ๋” ๊ฐ„๊ฒฐํ•˜๊ณ  ๊น”๋”ํ•˜๊ฒŒ ์“ธ ์ˆ˜ ์žˆ๋Š”์ง€ ๊ณ ๋ฏผํ•˜๋Š” ๊ณผ์ •์ด..

Python/Programmers 2024.01.30

[Machine Learning] Bias & Variance

ML์— ๋Œ€ํ•œ ์ผ๋ฐ˜์  ์ •์˜ Model class๋ฅผ ์„ ํƒํ•œ ํ›„, ํ•™์Šต๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ๋ชจ๋ธ์ด ์ž˜ ๋™์ž‘ํ•˜๋„๋ก ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ๊ฒฐ์ •ํ•ด์•ผ ํ•จ. ์ž˜ ๋™์ž‘ํ•˜๋ ค๋ฉด ์†์‹คํ•จ์ˆ˜๋ฅผ ์„ค์ •ํ•ด์•ผ ํ•œ๋‹ค. ์—ฌ๊ธฐ์„œ ์†์‹คํ•จ์ˆ˜๋ž€ ๋ชจ๋ธ์˜ ์˜ˆ์ธก๊ฐ’๊ณผ ์ •๋‹ต ๊ฐ’์ด ํ‹€๋ฆด ์ˆ˜๋ก ํฐ ๊ฐ’์„ ์ฃผ๋Š” ํ•จ์ˆ˜๋ฅผ ๋งํ•œ๋‹ค. squared loss๋ž€ ์˜ˆ์ธก๊ฐ’๊ณผ ์ •๋‹ต๊ฐ’์ด ํ‹€๋ฆด ์ˆ˜๋ก 2์ฐจ์˜ ํ•จ์ˆ˜๋กœ ํŒจ๋„ํ‹ฐ ์ฃผ๋Š” ์†์‹ค ํ•จ์ˆ˜๋ฅผ ๋งํ•˜๋ฉฐ, ์ด๋ฅผ ์ •์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. classification์ด๋ž€ ์ด์ง„ ๋ถ„๋ฅ˜๋กœ loss๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๊ฒƒ์œผ๋กœ, ๋งž์œผ๋ฉด 0, ํ‹€๋ฆฌ๋ฉด 1์„ ์ค€๋‹ค. ์ด๋ ‡๊ฒŒ loss funcion์„ ๊ฒฐ์ •ํ•˜๋ฉด ์ตœ์ ํ™” ๋ฌธ์ œ๋กœ ๊ฒฐ์ • ๊ฐ€๋Šฅ. ์ตœ์ข…์ ์œผ๋กœ ์†์‹ค์„ ์ตœ์†Œํ™”ํ•˜๋Š” w, b๋ฅผ ์ฐพ๊ณ  ์ผ๋ฐ˜ํ™”ํ•˜๋Š” ๊ฒƒ์ด ๋ชฉํ‘œ์ด๋‹ค. ์ผ๋ฐ˜ํ™” ์‚ฌ์†Œํ•œ ์˜ค๋ฅ˜์— ๊ณผํ•˜๊ฒŒ ์ ํ•ฉํ•˜๊ฒŒ ๋˜๋ฉด ์˜ค๋ฒ„ํ”ผํŒ…์ด ๋‚จ. ์ผ๋ฐ˜ํ™”๊ฐ€ ๋˜์ง€ ์•Š๋Š”๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ..

LG Aimers 2024.01.30

Lambda ํ•จ์ˆ˜์™€ S3 ๋ฒ„ํ‚ท ์—ฐ๊ฒฐํ•˜๊ธฐ

AWS console ์ฐฝ์—์„œ Lambda ๊ฒ€์ƒ‰ ํ›„ ์ด๋™ ํ•จ์ˆ˜ ์ƒ์„ฑ ํด๋ฆญ ํ•จ์ˆ˜์ด๋ฆ„์„ ์ž…๋ ฅํ•˜๊ณ , ๋Ÿฐํƒ€์ž„์€ python 3.12 ๋ฅผ ์„ ํƒํ•œ๋‹ค. ๋žŒ๋‹ค ํ•จ์ˆ˜๋ฅผ ์ž‘์„ฑํ•  ๋•Œ ์‚ฌ์šฉํ•  ์–ธ์–ด๋ฅผ ์„ ํƒํ•˜๋Š” ๊ฒƒ. ๋‚˜๋Š” ํŒŒ์ด์ฌ์ด ์ฃผ ์–ธ์–ด์ด๊ธฐ ๋•Œ๋ฌธ์— ํŒŒ์ด์ฌ์„ ์„ ํƒํ–ˆ๋‹ค. ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด ํ•จ์ˆ˜ ์ƒ์„ฑ์€ ๋๋‚œ๋‹ค. ์ด ํ™”๋ฉด์ด ๋‚˜์˜ค๋ฉด ์„ฑ๊ณต์ด๋‹ค. ์ด์ œ ์—ฌ๊ธฐ ํŠธ๋ฆฌ๊ฑฐ ์ถ”๊ฐ€๋ฅผ ํด๋ฆญํ•œ๋‹ค. ํŠธ๋ฆฌ๊ฑฐ ์ถ”๊ฐ€์—์„œ ์†Œ์Šค๋ฅผ ์„ ํƒํ•œ๋‹ค. ์†Œ์Šค๋Š” S3๋ฅผ ์„ ํƒ. ์•„๋ž˜ ๊ทธ๋ฆผ์— ๋‚˜์™€์žˆ๋Š” ๊ฒƒ ์ฒ˜๋Ÿผ ๋ฒ„ํ‚ท์€ ์•„๊นŒ ์šฐ๋ฆฌ๊ฐ€ ๋งŒ๋“  ๋ฒ„ํ‚ท์„ ์„ ํƒํ•˜๊ณ , ์•„๋ž˜ ์ฒดํฌ๋ฐ•์Šค์— ํ‘œ์‹œํ•˜๊ณ  ์ถ”๊ฐ€๋ฅผ ๋ˆ„๋ฅด๋ฉด lambda์— ํŠธ๋ฆฌ๊ฑฐ ์ถ”๊ฐ€๊ฐ€ ๋œ๋‹ค. ์ฝ”๋“œ-> ์ฝ”๋“œ ์†Œ์Šค ์ฐฝ์—์„œ lambda_function.py ๋ผ๋Š” ๊ธฐ๋ณธ ํŒŒ์ด์ฌ ํŒŒ์ผ์„ ์„ ํƒํ•œ ํ›„ ์•„๋ž˜ ์ฝ”๋“œ๋ฅผ ์‚ฝ์ž…ํ•˜๊ณ  Deploy๋ฅผ ์„ ํƒํ•˜๋ฉด ๋œ๋‹ค. ๋‚˜์ค‘์— ์ถ”๊ฐ€์ ์œผ๋กœ ..

AWS 2024.01.18

S3 ๋ฒ„ํ‚ท์œผ๋กœ ์›น์‚ฌ์ดํŠธ ๋ฐฐํฌํ•˜๋Š” ๋ฒ• (์ •์  ํ˜ธ์ŠคํŒ… ํ•˜๋Š” ๋ฒ•)

ํ”„๋กœ์ ํŠธ๋กœ ๊ฒŒ์ž„์„ ๋งŒ๋“  ๋’ค AWS๋กœ ๋ฐฐํฌํ•˜๋Š” ๋ฒ•์„ ์„ ํƒํ•˜๊ณ  ๋ฐฐํฌํ•˜์˜€๋‹ค. ๋จผ์ € AWS ์ฝ˜์†” ์ฐฝ์—์„œ ๋กœ๊ทธ์ธ ํ›„ ๊ฒ€์ƒ‰์ฐฝ์— S3๋ฅผ ๊ฒ€์ƒ‰ํ•ด์„œ ์•„๋ž˜์™€ ๊ฐ™์€ ๊ทธ๋ฆผ์„ ์„ ํƒํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋ฉด ๋‹ค์Œ๊ณผ ๊ฐ™์€ ํ™”๋ฉด์ด ๋‚˜์˜จ๋‹ค. ์—ฌ๊ธฐ์„œ ๋ฒ„ํ‚ท๋งŒ๋“ค๊ธฐ๋ฅผ ์„ ํƒํ•œ๋‹ค. AWS ๋ฆฌ์ „์€ ์„œ์šธ, ap-northeasr-2๋กœ ์ง€์ •ํ•˜๊ณ , ๋ฒ„ํ‚ท์˜ ํผ๋ธŒ๋ฆญ ์•ก์„ธ์Šค ์ฐจ๋‹จ์„ ํ’€์–ด์ค€๋‹ค. ์•„๋ž˜ ๊ฒฝ๊ณ  ๋ฌธ๊ตฌ์˜ ์ฒดํฌ๋ฐ•์Šค๋ฅผ ์ฒดํฌํ•œ๋‹ค. ๋ฒ„ํ‚ท ๋งŒ๋“ค๊ธฐ๋ฅผ ๋ˆ„๋ฅด๋ฉด ๋ฒ„ํ‚ท์ด ์ƒ์„ฑ๋œ๋‹ค. ์ƒ์„ฑํ•œ ๋ฒ„ํ‚ท์— ๋“ค์–ด๊ฐ€ ๊ถŒํ•œ-> ๋ฒ„ํ‚ท ์ •์ฑ…->ํŽธ์ง‘->์ •์ฑ…์ƒ์„ฑ๊ธฐ๋กœ ๋“ค์–ด๊ฐ„๋‹ค. Select Type of Policy๋Š” S3 Bucket Policy ์„ ํƒ. Principal์€ * ๊ธฐ์ž…. Actions๋Š” Getobject ์„ ํƒ. ARN์€ ๋ฒ„ํ‚ท์ •์ฑ…ํŽธ์ง‘์— ์žˆ๋Š” ๋ฒ„ํ‚ท ARN์„ ๋ณต์‚ฌํ•ด์„œ ๋ถ™์ด๊ณ , ๋’ค์— /*์„ ์ถ”๊ฐ€. ..

AWS 2024.01.17

[Machine Learning] ML ๊ฐœ์š”

์ธ๊ณต์ง€๋Šฅ์˜ ํ•œ ๋ถ„์•ผ. ์ธ๊ณต์ง€๋Šฅ์—๋Š” ๊ธฐ๊ณ„ํ•™์Šต, ์ปดํ“จํ„ฐ ๋น„์ „, ์ž์–ธ์–ด์ฒ˜๋ฆฌ, ๋กœ๋ณดํ‹ฑ์Šค ๋“ฑ์ด ํฌํ•จ๋จ. ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์Šค์Šค๋กœ ๋ฐœ์ „ํ•˜๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๋‹ค๋ฃจ๋Š” ํ•™๋ฌธ. ๋”ฅ๋Ÿฌ๋‹์€ ๊ธฐ๊ณ„ํ•™์Šต ์ค‘ ์‹ ๊ฒฝ๋ง ์ค‘ layer๊ฐ€ ๋งŽ์€ ์‹ ๊ฒฝ๋ง์„ ์“ฐ๋Š” ๋ถ„์•ผ. T = Task : ๊ธฐ๊ณ„ํ•™์Šต์œผ๋กœ ๋ฌด์—‡์„ ํ•  ๊ฒƒ์ธ์ง€ P = Performance measure : ์„ฑ๋Šฅ์ง€ํ‘œ๋Œ€๋กœ ํ‰๊ฐ€ํ•จ. ์–ด๋–ค ์„ฑ๋Šฅ์ง€ํ‘œ ์‚ฌ์šฉํ•  ๊ฒƒ์ธ์ง€. E = Experience -> ๋ฐ์ดํ„ฐ๋ฅผ ๋งํ•จ. ์–ด๋–ค ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•  ๊ฒƒ์ธ์ง€. ๊ธฐ๊ณ„ํ•™์Šต์˜ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ฐœ๋…๊ณผ ๋ชฉํ‘œ๋Š” ์ผ๋ฐ˜ํ™”. ์—ฌ๋Ÿฌ๊ฐ€์ง€๋ฅผ ๋ณด๊ณ  ์œ ์‚ฌ์„ฑ์„ ์ฐพ์•„๋‚ด์–ด ํ•˜๋‚˜์˜ ํ”„๋กœํ† ํƒ€์ž…์„ ๋งŒ๋“ค๊ณ  ์ผ๋ฐ˜ํ™”๋ฅผ ํ•จ. ์ถ”์ƒํ™” ๊ณผ์ •. ์ด๊ฒƒ์ด ๋” ๋ฐœ์ „ํ•ด์„œ Generative algorithem์ด ๋จ. Task์— ๋”ฐ๋ผ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๋‹ฌ๋ผ์ง„๋‹ค. ๊ทธ๋ž˜์„œ ํ•˜๋‚˜์˜ ์•Œ๊ณ ๋ฆฌ..

LG Aimers 2024.01.16

Object Detection

๊ฐœ์š”Object Detection = Localization + Classification. (locatlization์€ ํšŒ๊ท€๋ฌธ์ œ, classification์€ ๋ถ„๋ฅ˜๋ฌธ์ œ)one stage detector: localization๊ณผ classification์„ ํ•˜๋‚˜์˜ ๋„คํŠธ์›Œํฌ์—์„œ ์ฒ˜๋ฆฌ์†๋„๊ฐ€ ๋น ๋ฆ„. ์ •ํ™•๋„๊ฐ€ ๋‚ฎ์Œ.Two stage detector: localization๊ณผ classification์„ ๋‚˜๋ˆ ์„œ ์ˆœ์ฐจ์ ์œผ๋กœ ์‹คํ–‰ ์ฒ˜๋ฆฌ์†๋„๊ฐ€ ๋–จ์–ด์ง. ์ •ํ™•๋„๊ฐ€ ๋†’์Œ.์‹ค์ œ ์‚ฌ์šฉ ์‹œ, ์‹ค์‹œ๊ฐ„ ๊ฒ€์ถœ์„ ํ•ด์•ผํ•˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„์ง€๋ฉฐ ์†๋„๊ฐ€ ๋น ๋ฅธ ๊ฒƒ์ด ์ค‘์š”ํ•ด์ง. ⇒ one stage detector๋ฅผ ์‚ฌ์šฉํ•ด ์ •ํ™•๋„๋ฅผ ๋†’์ด๋Š” ๋ฐฉ๋ฒ• ์—ฐ๊ตฌ.์ถœ๋ ฅ๊ฐ’Bounding Box์˜ ์œ„์น˜๋Š” 4๊ฐœ ๊ฐ’์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ์Œ. (์„ผํ„ฐ์˜ x, y, w, b)...

SQL-DAY5

์ง‘๊ณ„ํ•จ์ˆ˜ COUNT(*): NULL๊ฐ’์„ ํฌํ•จํ•œ ํ–‰์˜ ์ˆ˜ ์ถœ๋ ฅ COUNT(ํ‘œํ˜„์‹): NULL ๊ฐ’์„ ์ œ์™ธํ•œ ํ‘œํ˜„์‹์˜ ํ–‰์˜ ์ˆ˜ ์ถœ๋ ฅ SUM([DISTINCT | ALL] ํ‘œํ˜„์‹): ํ‘œํ˜„์‹์˜ NULL ๊ฐ’์„ ์ œ์™ธํ•œ ํ•ฉ๊ณ„ ์ถœ๋ ฅ AVG([DISTINCT | ALL] ํ‘œํ˜„์‹): ํ‘œํ˜„์‹์˜ NULL ๊ฐ’์„ ์ œ์™ธํ•œ ํ‰๊ท  ์ถœ๋ ฅ MAX([DISTINCT | ALL] ํ‘œํ˜„์‹): ํ‘œํ˜„์‹์˜ ์ตœ๋Œ€๊ฐ’ ์ถœ๋ ฅ STDEV([DISTINCT | ALL] ํ‘œํ˜„์‹): ํ‘œํ˜„์‹์˜ ํ‘œ์ค€ํŽธ์ฐจ ์ถœ๋ ฅ VARIAN([DISTINCT | ALL] ํ‘œํ˜„์‹): ํ‘œํ˜„์‹์˜ ๋ถ„์‚ฐ ์ถœ๋ ฅ GROUP BY ํ–‰๋“ค์„ ์†Œ๊ทธ๋ฃนํ™” ํ•จ. GROUP BY ๋œ ์ƒํƒœ์—์„œ SELECT ์‹คํ–‰ HAVING ์กฐ๊ฑด์„ ๋ถ€์—ฌํ•˜์—ฌ ์กฐ๊ฑด์— ๋งž๋Š” ๋ฐ์ดํ„ฐ๋“ค์„ ๊ทธ๋ฃนํ™” ๊ทธ๋ฃน์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒฐ๊ณผ ์ง‘ํ•ฉ ํ–‰์—๋งŒ ์กฐ๊ฑด ๋ถ€์—ฌ...

SQL 2023.10.28

CNN-1

CNNํŠน์ง•์ถ”์ถœConvolution Layer์ด๋ฏธ์ง€ ํŠน์ง• ์ถ”์ถœ์— ์„ฑ๋Šฅ์ด ์ข‹๋‹ค.์ด๋ฏธ์ง€์™€ ํ•„ํ„ฐ ๊ฐ„ ํ•ฉ์„ฑ๊ณฑ ์—ฐ์‚ฐ์„ ํ•ด์„œ ์ด๋ฏธ์ง€ ํŠน์ง•์„ ์ถ”์ถœ. ๊ฐ’์ด ๊ฐ™์œผ๋ฉด ์œ„์น˜๊ฐ€ ๋‹ฌ๋ผ๋„ ๊ฐ™์€ ๊ฒƒ์ด๋ผ๊ณ  ์ธ์‹.๊ทธ๋ž˜์„œ ๊ทธ๋ž˜์„œ ์œ„์น˜๊ฐ€ ๋ฐ”๋€Œ์–ด๋„ ์ด๋ฏธ์ง€ ์‹๋ณ„ ๊ฐ€๋Šฅ.๊ฐ’์ด ๋‚˜์˜จ๋‹ค๋Š” ๊ฒƒ์€ ํ•„ํ„ฐ๊ฐ€ ํ‘œํ˜„ํ•˜๋Š” ์ด๋ฏธ์ง€ ํŠน์„ฑ์ด ์กด์žฌํ•œ๋‹ค๋Š” ๊ฒƒ.๋™์ผํ•œ index ๊ฐ’๋ผ๋ฆฌ ๊ณฑํ•ด์„œ ๋”ํ•ด์คŒ. weight์˜ˆ์‹œ0x1 + 1x0 + 7x1 + 5x1 + 5x2 + 6x0 +5x3 + 3x0 + 3x1 = 40์ด ๋„ค๋ฒˆ ์‹ค์‹œํ•ด์„œ ๊ฒฐ๊ณผ ๊ฐ’์€ ๋‹ค์Œ๊ณผ ๊ฐ™์Œ.์ถ”๋ก Dense Layer์ด๋ฏธ์ง€์˜ ๊ณต๊ฐ„์  ๊ตฌ์กฐ๋ฅผ ํ•™์Šตํ•˜๋Š”๋ฐ ์–ด๋ ค์›€. (์œ„์น˜๋งŒ ๋ฐ”๋€Œ์–ด๋„ ๋‹ค๋ฅธ ๊ฐ’์œผ๋กœ ์ธ์‹)weight๊ฐ€ ๋งŽ์•„ ํ•™์Šต์— ์–ด๋ ค์›€์ด ์žˆ์Œ.Handcraft ๋ฐฉ์‹์˜ filter์˜์ƒ์œผ๋กœ๋ถ€ํ„ฐ ์œค๊ณฝ์„  ํŠน์„ฑ์„ ์ฐพ๊ธฐ.sobel ํ•„..

SQL_DAY3

WHERE ์ ˆ ์—ฐ์‚ฐ์ž ๋น„๊ต ์—ฐ์‚ฐ์ž =, >, ≥, ๋ถ€์ • SQL ์—ฐ์‚ฐ์ž NOT BETWEEN a AND b NOT IN() IS NOT NULL ROWNUM & TOP ์˜๋ฏธ: SQL ์ฒ˜๋ฆฌ ๊ฒฐ๊ณผ ์ง‘ํ•ฉ์˜ ๊ฐ ํ–‰์— ๋Œ€ํ•ด ์ž„์‹œ๋กœ ๋ถ€์—ฌ๋˜๋Š” ์ผ๋ จ๋ฒˆํ˜ธ ex) WHERE ROWNUM < 3 3๊ฐœ ํ–‰ ์ถœ๋ ฅ. ex) SELECT TOP(3) emp_name ORDER BY ์ ˆ์ด ์‚ฌ์šฉ๋˜๋ฉด ROWNUM ๊ณผ TOP์— ๊ธฐ๋Šฅ ์ฐจ์ด ๋ฐœ์ƒ Uploaded by N2T

SQL 2023.10.26

SQL_DAY4

ํ•จ์ˆ˜์˜ ์ดํ•ด ๋‚ด์žฅ ํ•จ์ˆ˜(์ž…๋ ฅ๋˜๋Š” ๊ฐ’์ด ๋งŽ์•„๋„ ์ถœ๋ ฅ์€ ํ•˜๋‚˜๋งŒ ๋˜๋Š” ํ•จ์ˆ˜) LOWER(’๋ฌธ์ž์—ด’): ์†Œ๋ฌธ์ž๋กœ ๋ณ€ํ™˜ UPPER(’๋ฌธ์ž์—ด’): ๋Œ€๋ฌธ์ž๋กœ ๋ณ€ํ™˜ ASCII(’๋ฌธ์ž์—ด’): ๋ฌธ์ž๋ฅผ ์•„์Šคํ‚ค ์ฝ”๋“œ ๊ฐ’์œผ๋กœ ๋ณ€ํ™˜ CHR, CHAR(์ˆซ์ž): ์•„์Šคํ‚ค ์ฝ”๋“œ ๊ฐ’์„ ๋ฌธ์ž๋กœ ๋ณ€ํ™˜ CONCAT(’๋ฌธ์ž์—ด’, ’๋ฌธ์ž์—ด’), ||, + : ๋ฌธ์ž์—ด ๋ถ™์ด๊ธฐ SUBSTR, SUBSTRING(’๋ฌธ์ž์—ด’, ์‹œ์ž‘์ธ๋ฑ์Šค, ๋ ์ธ๋ฑ์Šค): ์›ํ•˜๋Š” ๋ฌธ์ž์—ด๋งŒ ์ถ”์ถœ LENGTH, LEN(’๋ฌธ์ž์—ด’): ๊ธธ์ด ๋ฐ˜ํ™˜ LTRIM(’๋ฌธ์ž์—ด’, ‘ํŠน์ •๋ฌธ์ž’): ์™ผ์ชฝ์˜ ํŠน์ • ๋ฌธ์ž์—ด ์‚ญ์ œ RTRIM(’๋ฌธ์ž์—ด’, ‘ํŠน์ •๋ฌธ์ž’): ์˜ค๋ฅธ์ชฝ์˜ ํŠน์ • ๋ฌธ์ž์—ด ์‚ญ์ œ TRIM(‘ํŠน์ •๋ฌธ์ž’ FROM ’๋ฌธ์ž์—ด’): ์–‘์ชฝ์˜ ํŠน์ • ๋ฌธ์ž์—ด ์‚ญ์ œ ์ˆซ์žํ˜• ํ•จ์ˆ˜ ABS(์ˆซ์ž): ์ˆซ์ž ์ ˆ๋Œ€๊ฐ’..

SQL 2023.10.26